Nucleophilic Attacks on Carbon-Carbon Double Bonds. Part XVI. ${ }^{1}$ Some Relative Reactivities of the Leaving Groups ($k_{\mathrm{Br}} / \boldsymbol{k}_{\mathrm{Cl}}, \boldsymbol{k}_{\mathrm{OMs}} / \boldsymbol{k}_{\mathrm{0} 1}$, and $k_{\text {OBs }} / \boldsymbol{k}_{\text {OTs }}$) in Vinylic Substitutions

By Zvi Rappoport * and Alain Topol, Department of Organic Chemistry, The Hebrew University, Jerusalem, Israel

Abstract

Displacement of the halogen of 1 -chloro- and 1-bromo-2,2-dimethoxycarbonylethylenes (II) and (III) by several substituted anilines in acetonitrile is of the second order; Hammett's ρ values are between -2.24 and -2.40 and $k_{\text {II }} / k_{\text {III }}$ is ca. 1. Reaction of p-cyanoaniline with 1 -chloro- and 1-mesyloxy-2,2-dicyanoethylenes gives $k_{\mathrm{OM}_{\mathrm{I}}} / k_{\mathrm{Cl}}=1$. Substitution of 1-p-nitrophenyl-1-tosyloxy-(and 1-brosyloxy-)2,2-diethoxycarbonylethylenes by piperidine and morpholine gives $k_{\text {OBs }} / k_{\text {OTs }}=1.63-1.90$, and $k_{\text {pip }} / k_{\text {morp }}$ of $13.7-16 \cdot 2$. Two α-cyanogroups are 100 -fold more activating than two α-ethoxycarbonyl groups in nucleophilic vinylic substitution. A rate-determining nucleophilic addition of amines is suggested for these reactions. The relative reactivities concerning the first step in nucleophilic vinylic substitutions of the addition-elimination type ($A d_{\mathrm{N}}-E$) are discussed, as well as criteria for distinguishing between the $A d_{N}-E$ and the vinylic $S_{N} 1$ mechanisms.

Among the variety of nucleophilic vinylic substitution routes ${ }^{2}$ the addition-elimination $\left(A d_{\nwarrow}-E\right)^{2,3}$ and the $S_{\mathrm{N}} \mathrm{l}$ mechanisms ${ }^{4}$ are the most widely studied. We recently suggested and used several criteria for distinguishing between these two routes in the reactions of nucleophiles with 9 -(α-halogenoarylidene)fluorenes. ${ }^{5}$ One

[^0]criterion was the 'element effect' $k_{\mathrm{Br}} / k_{\mathrm{C} 1}$, i.e., the relative mobility of the chloride and bromide leaving groups. ${ }^{6}$ The brosylate-tosylate $\left(k_{\mathrm{OBs}} / k_{\mathrm{OTS}_{3}}\right)^{7-9}$ and the tosylate-bromide $\left(k_{\text {OTs }} / k_{\mathrm{Br}}\right){ }^{96-11}$ reactivity ratios were used for distinguishing between the $S_{\mathrm{N}} 1$ and competing

[^1]routes in both saturated and vinylic systems. Such ratios should also be useful in deciding whether bondformation or bond-cleavage is important in the transition state of the rate-determining step of a vinylic substitution.

The $A d_{\mathrm{N}}-E$ route is a multi-step reaction. ${ }^{2}$. Usually, the initial nucleophilic attack is rate-determining, but with a sluggish leaving group subsequent steps also appear in the rate equation. With amines, the initial attack may be reversible. ${ }^{12}$ The intermediate zwitterion can lose HX in a slow amine-assisted expulsion of a proton (step $k_{2 \mathrm{~A}}$), or the $\mathrm{C}-\mathrm{X}$ bond cleavage may be rate-determining (step k_{2}). The observed third-order coefficient for the catalysed reaction [equation (2)] or the second-order coefficient for the uncatalysed reaction [equation (3)] are both composite. ${ }^{13}$ Both types of

$k_{065}=k_{1} k_{2 A} / k_{-1}$
$k_{\text {obs }}=k_{1} k_{2} / k_{-1}$
behaviour were recently observed in the reactions of 1,1-dicyano-2- p-dimethylaminophenyl-2-halogeno-

$$
\begin{gathered}
p-\mathrm{Me}_{2} \mathrm{~N} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{C}(\mathrm{X})=\mathrm{C}(\mathrm{CN})_{2} \\
(\mathrm{I}), X=\mathrm{F}, \mathrm{Cl}
\end{gathered}
$$

ethylenes (I) with amines. ${ }^{13}$ In acetonitrile when
various steps. Opposing substituent effects on the various steps may lead to unusual reactivity ratios for the nucleophiles and to very low and even negative activation enthalpies. The analysis of the behaviour of such systems would be helped by separate study of the substituent effects in the substrate and in the nucleophile when the nucleophilic attack is rate-determining, i.e., in systems with good leaving groups.

In order to get information on these questions we studied three reactions: (a) The reaction of several anilines with 1 -chloro- and 1-bromo-2,2-dimethoxycarbonylethylenes (II) and (III) [equation (4)]; (b) the reaction of 1 -chloro- and 1 -mesyloxy-2,2-dicyanoethylenes (IV) and (V) with p-cyanoaniline [equation (5)]; and (c) the reactions of 1-brosyloxy- and 1-tosyl-oxy-1- p-nitrophenyl-2,2-diethoxycarbonylethylenes (VI) and (VII) with piperidine and morpholine [equation (6)].

RESULTS

Reaction of Anilines with the Halogenoethylenes (II) and (III). -The chloro- and bromo-compounds (II) and (III) were prepared from the phosphorus pentahalides and the enolate of dimethyl hydroxymethylenemalonate according to equation (7). The displacement of the vinylic halogen by six anilines was followed spectrophotometrically in acetonitrile by observing the absorptions of the product enamines. The reactions were overall of the second order (with rate coefficients $k_{\text {obs }}$), first order each in the vinyl halide and the amine, with no apparent trend of increase in $k_{\text {obs }}$ with the increase in the amine concentration (Table 1). The derived Hammett ρ values (Table 2) are $\mathbf{- 2 \cdot 2 4}$ to $-2 \cdot 40$ and the differences between the ρ 's of compounds (II) and (III) are within the experimental error. The ρ values decrease slightly on increasing the temperature. Bransted plots of $\log k_{\text {obs }}$ against the $\mathrm{p} K_{\mathrm{a}}\left(\mathrm{H}_{2} \mathrm{O}\right)$ of the para- and the meta-substituted anilines are approximately linear with slopes of $0.75-0.80$ (Table 2). The points for

$$
\begin{aligned}
& \text { (III) } X=C l \\
& \text { (III) } X=B r \\
& \mathrm{XCH:C}(\mathrm{CN})_{2}+p-\mathrm{NC} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NH}_{2} \longrightarrow \mathrm{p}-\mathrm{NCC}_{6} \mathrm{H}_{4} \cdot \mathrm{NHCH:C}(\mathrm{CN})_{2}+\mathrm{HX} \\
& \text { (IV) } X=C L \\
& \text { (I) } X=\mathrm{OSO}_{2} \mathrm{Me}(\mathrm{OMs} \text {) }
\end{aligned}
$$

$\begin{aligned} & \text { (VI) } X=\mathrm{OSO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\mathrm{p} \text { (OTs) } \\ & \text { (VII) } X=\mathrm{OSO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}-\mathrm{p} \quad \text { (OBs) }\end{aligned} \quad \mathrm{Z}=0, \mathrm{CH}_{2}$
$\mathrm{X}=\mathrm{F}$ equation (2) applies, and when $\mathrm{X}=\mathrm{Cl}$ the main reaction is via the k_{2} route with small contribution from the $k_{2 \mathrm{~A}}$ route. ${ }^{13 a}$ For such systems the activation parameters, the Hammett ρ values, and the Brønsted α values for the amine all have contributions from the
${ }_{12}$ Z. Rappoport, C. Degani, and S. Patai, J. Chem. Soc., 1963, 4513; Z. Grünbaum, S. Patai, and Z. Rappoport, J. Chem. Soc., 1966, 1133.
${ }^{13}$ Z. Rappoport and R. Ta-Shma, J. Chem. Soc. (B), 1971, (a) 871 ; (b) 1461.

2,6-dimethylaniline are $0.57-0.67 \mathrm{log}$ unit below the Brønsted lines, i.e., the amine is $3.7-4 \cdot 7$ times less reactive

than expected by electronic effects alone. The $k_{\mathrm{Br}} / k_{\mathrm{Ol}}$ ratios for all the amines are near unity with the values for 2,6-dimethylaniline being the lowest (Table 3). The
activation enthalpies are low and the activation entropies highly negative (Table 4). Tables 3 and 4 also summarise data derived from the $k_{\text {obs }}$ values for the reactions described by equations (5) and (6).
dicyanoethylene (V) was prepared from 1-chloro-2,2dicyanoethylene (IV) with silver mesylate. Amines (anilines, diethylamine, morpholine) replaced readily the chlorine of (IV) (Tables 7-8) but the reactions with most

Table 1
Reaction of anilines with $\mathrm{XCH}: \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$ in acetonitrile

(II), $\mathrm{X}=\mathrm{Cl}$									
p-Toluidine	At $30{ }^{\circ} \mathrm{C}$					At $40{ }^{\circ} \mathrm{C}$			
10^{3} [Amine]/m	$4 \cdot 0$	$6 \cdot 0$	6.0	$8 \cdot 0$	12.0	1.0	$2 \cdot 0$	$4 \cdot 0$	
$10^{2}[(\mathrm{II})] / \mathrm{M}$	1.4	$0 \cdot 7$	1.4	$1 \cdot 4$	1.4	1.4	$1 \cdot 4$	1.4	
$10^{2} k_{\text {obs }} / 1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$	$21 \cdot 3$	18.5	21.5	$22 \cdot 8$	$18 \cdot 8 \quad 20 \cdot 5$	$27 \cdot 6$	28.0	$28 \cdot 3$	$28.4 \pm 0.6^{\text {b }}$
m-Toluidine									
10^{3} [Amine]/m	3.75	$7 \cdot 5$	$15 \cdot 0$	$22 \cdot 5$		$2 \cdot 5$	$5 \cdot 0$	$10 \cdot 0$	
$10^{5}[(\mathrm{II})] / \mathrm{m}$	$7 \cdot 5$	$7 \cdot 5$	$3 \cdot 75$	$7 \cdot 5$		$6 \cdot 5$	$4 \cdot 6$	$6 \cdot 5$	
$10^{2} k_{\text {obs }} / 1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$	8.90	$9 \cdot 22$	$9 \cdot 15$	9.90	$9.27 \pm 0.32{ }^{\text {a }}$	$12 \cdot 9$	13.0	$13 \cdot 1$	$13 \cdot 0 \pm 0 \cdot 1^{6}$
Aniline									
10^{4} [Amine]/m	$0 \cdot 5$	1.0	1.5	2.5		$0 \cdot 25$	$0 \cdot 5$	1.0	
$10^{5}[(\mathrm{II})] / \mathrm{M}$	$10 \cdot 0$	$7 \cdot 5$	$10 \cdot 0$	$10 \cdot 0$		$8 \cdot 0$	$8 \cdot 0$	$8 \cdot 0$	
$10^{2} k_{\text {obs }} / 1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$	7.00	$6 \cdot 69$	7.00	6.85	$6.84 \pm 0.17{ }^{\text {a }}$	$10 \cdot 6$	$10 \cdot 5$	$10 \cdot 4$	$10 \cdot 4 \pm 0 \cdot 1^{6}$
m-Anisidine									
10^{4} [Amine]/m	1.0	3.0	$4 \cdot 0$	$4 \cdot 5$		$0 \cdot 5$	1.0	$2 \cdot 0$	
$10^{5}[(\mathrm{II})] / \mathrm{M}$	$7 \cdot 5$	$7 \cdot 5$	$5 \cdot 6$	$7 \cdot 5$		$7 \cdot 5$	$7 \cdot 5$	$7 \cdot 5$	
$10^{2} k_{\text {obs }} / 1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$	$4 \cdot 68$	$4 \cdot 70$	$5 \cdot 04$	$4 \cdot 80$	$4 \cdot 87 \pm 0 \cdot 20{ }^{a}$	$7 \cdot 45$	$7 \cdot 39$	$7 \cdot 45$	$7.41 \pm 0.04{ }^{\text {b }}$
p-Bromoaniline									
10^{4} [Amine]/m	2.0	6.0	10.0			1.0	$3 \cdot 0$	$5 \cdot 0$	
$10^{5}[(\mathrm{II})] / \mathrm{M}$	12.0	$6 \cdot 0$	12.0			$7 \cdot 0$	$10 \cdot 0$	$10 \cdot 0$	
$10^{2} k_{\text {obs }} / 1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$	1.84	1.80	1.90	1.84	.03a	$2 \cdot 92$	2.72	$2 \cdot 84$	$2.85 \pm 0.07^{\circ}$
2,6-Dimethylaniline									
10^{3} [Amine] $/ \mathrm{m}$	0.5	$2 \cdot 0$	$3 \cdot 0$			$0 \cdot 4$	$0 \cdot 8$	$1 \cdot 6$	
$10^{5}[(\mathrm{II})] / \mathrm{M}$	$5 \cdot 0$	$2 \cdot 5$	$5 \cdot 0$			$4 \cdot 0$	$2 \cdot 8$	$4 \cdot 0$	
$10^{2} k_{\text {obd }} / 1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$	$0 \cdot 650$	$0 \cdot 605$	$0 \cdot 647$	0.631	$0.021{ }^{\text {a }}$	0.948	0.935	$0 \cdot 895$	$0.931 \pm 0.018^{\text {b }}$
(III) $\mathrm{X}=\mathrm{Br}$									
p-Toluidine									
10^{3} [Amine]/m	$4 \cdot 0$	10.0	14.0			1.0	3.0	6.0	
$10^{4}[(\mathrm{III})] / \mathrm{M}$	$1 \cdot 4$	1.4	$0 \cdot 7$			$1 \cdot 2$	$0 \cdot 8$	1.2	
$10^{2} k_{\text {obs }} / 1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$	$18 \cdot 4$	$19 \cdot 0$	$18 \cdot 1$	18.7		$28 \cdot 4$	$29 \cdot 6$	$30 \cdot 2$	$29.4 \pm 0 \cdot 5^{\text {b }}$
m-Toluidine									
10^{3} [Amine] $/ \mathrm{m}$	$3 \cdot 2$	6.5	13.0	19.5		2.5	$5 \cdot 0$	$10 \cdot 0$	
$10^{5}[($ III $)] / \mathrm{M}$	$6 \cdot 5$	$6 \cdot 5$	$6 \cdot 5$	6.5		$6 \cdot 5$	6.5	${ }_{6 \cdot 5}$	
$10^{2} k_{\text {obs }} / 1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$	$9 \cdot 30$	$9 \cdot 24$	$9 \cdot 09$	$9 \cdot 18$	$9 \cdot 11 \pm 0 \cdot 11{ }^{\circ}$	$13 \cdot 9$	$13 \cdot 5$	13.5	$13 \cdot 4 \pm 0 \cdot 3^{b}$
Aniline									
10^{3} [Amine]/m	$5 \cdot 0$	$10 \cdot 0$	$25 \cdot 0$	$30 \cdot 0$		$2 \cdot 5$	$5 \cdot 0$	$10 \cdot 0$	
$10^{5}[(\mathrm{III})] / \mathrm{m}$	$10 \cdot 0$	$10 \cdot 0$	10.0	$10 \cdot 0$		$8 \cdot 0$	$5 \cdot 0$	8.0	
$10^{2} k_{\mathrm{obs} 3} / 1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$	$7 \cdot 42$	$7 \cdot 30$	$7 \cdot 25$	$7 \cdot 56$	$7.25 \pm 0.22{ }^{\text {a }}$	11.0	$10 \cdot 6$	$10 \cdot 8$	10.8 ± 0.2^{5}
m-Anisidine									
10^{4} [Amine]/m	1.0	$2 \cdot 0$	$4 \cdot 0$	$4 \cdot 5$		0.5	1.0	2.0	
$10^{5}[($ III $)] / \mathrm{M}$	$6 \cdot 0$	$6 \cdot 0$	$4 \cdot 2$	$6 \cdot 0$		$7 \cdot 8$	$5 \cdot 2$	$7 \cdot 8$	
$10^{2} k_{\text {obs }} / 1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$	$4 \cdot 80$	4.92	$4 \cdot 96$	$4 \cdot 96$	$4.94 \pm 0.08{ }^{\circ}$	$7 \cdot 50$	$7 \cdot 73$	7.55	$7.60 \pm 0.07{ }^{6}$
p-Bromoaniline									
104[Amine]/m	2.0	$4 \cdot 0$	$7 \cdot 0$	$10 \cdot 0$		1.0	$3 \cdot 0$	$3 \cdot 0$	
$10^{5}[(\mathrm{III})] / \mathrm{m}$	$10 \cdot 0$	$7 \cdot 5$	$10 \cdot 0$	10.0		10.0	$7 \cdot 0$	$10 \cdot 0$	
$10^{2} k_{\text {obs }} / 1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$	1.89	1.92	1.96	1.92	$1.93 \pm 0.03^{\circ}$	$3 \cdot 06$	3.04	$3 \cdot 00$	$3.04 \pm 0.02{ }^{6}$
2,6-Dimethylanili									
104 [Amine]/m	$5 \cdot 0$	$10 \cdot 0$	$20 \cdot 0$	$30 \cdot 0$		$4 \cdot 0$	$8 \cdot 0$	16.0	
$10^{4}[(\mathrm{III})] / \mathrm{M}$	$5 \cdot 0$	$5 \cdot 0$	$5 \cdot 0$	$3 \cdot 8$		$4 \cdot 0$	$3 \cdot 0$	$4 \cdot 0$	
$10^{2} k_{\text {obs }} / 1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$	$0 \cdot 572$	0.521	0.525	0.530	0.535 ± 0.013^{a}	$0 \cdot 865$	0.842	$0 \cdot 838$	$0.849 \pm 0.009^{\text {b }}$

Reaction of p-Cyanoaniline with the Dicyanoethylenes (IV) and (V).-Attempts to prepare mesylate or tosylate analogues of (II) from dimethyl hydroxymethylenemalonate with mesylic or tosylic anhydride or from (II) with silver tosylate or mesylate failed. However, 1-mesyloxy-2,2-
of the meta- and the para-substituted anilines were too fast to measure by the conventional spectrophotometric method. With p-nitroaniline the absorptions of the free amine and the product enamine were too close. However, the reaction of p-cyanoaniline with the dicyanoethylenes (IV) and
(V) could be followed and was found to be of the second order (Table 5). The activation parameters are in Table 4, and the mesylate-chloride reactivity ratio in Table 3.

Reaction of Piperidine and Morpholine with the Nitrophenylethylenes (VI) and (VII).- p-Bromobenzenesulphonyl chloride and toluene- p-sulphonic anhydride with diethyl p-nitrobenzoylmalonate in basic solution gave (VI) and

Table 2
Hammett ρ and $\mathrm{Br} r$ nsted α values for the reaction of anilines with $\mathrm{XCH}: \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$ in acetonitrile

X	$t /{ }^{\circ} \mathrm{C}$	ρ^{a}	r^{b}	$\alpha^{a, c}$	r^{b}
Cl	30	-2.40 ± 0.2	0.987	0.80 ± 0.05	0.984
	40	-2.30 ± 0.2	0.984	0.76 ± 0.05	0.983
Br	30	-2.29 ± 0.2	0.985	0.76 ± 0.05	0.986
	40	-2.24 ± 0.2	0.981	0.75 ± 0.05	0.985

a The error quoted is the standard deviation of the slope.
${ }^{b}$ Correlation coefficient. © Using the $\mathrm{p} K_{\mathrm{a}}$ values in water.

Table 3
$k_{\mathrm{Br}} / k_{\mathrm{Cl}}, k_{\mathrm{OBs}} / k_{\mathrm{OTs}}$, and $k_{\mathrm{OMs}} / k_{\mathrm{Cl}}$ ratios in vinylic substitutions of X in RCX: CY_{2} by amines in acetonitrile
Reactivity ratio at

Amine	R	Y	$30{ }^{\circ} \mathrm{C} \quad 40{ }^{\circ} \mathrm{C}$	
			$k_{\mathrm{Br}} / k_{\mathrm{Cl}}$	
$p-\mathrm{MeC}_{6} \mathrm{H}_{4} \cdot \mathrm{NH}_{2}$	H	$\mathrm{CO}_{2} \mathrm{Me}$	0.91	1.04
$m-\mathrm{MeC}_{6} \mathrm{H}_{4} \cdot \mathrm{NH}_{2}$	H	$\mathrm{CO}_{2} \mathrm{Me}$	0.98	1.03
PhNH_{2}	$\stackrel{\mathrm{H}}{\mathrm{H}}$	$\mathrm{CO}_{2} \mathrm{Me}$	1.06	1.04
$m-\mathrm{MeOC}_{6} \mathrm{H}_{4} \cdot \mathrm{NH}_{2}$	H	$\mathrm{CO}_{2} \mathrm{Me}$	1.01	1.02
$p-\mathrm{BrC}_{6} \mathrm{H}_{4} \cdot \mathrm{NH}_{2}$	H	$\mathrm{CO}_{2} \mathrm{Me}$	1.05	1.07
2,6-Me2C6 ${ }_{6} \mathrm{H}_{4} \cdot \mathrm{NH}_{2}$	H	$\mathrm{CO}_{2} \mathrm{Me}$	0.85	0.91
			$k_{\text {OBs }} / k_{\text {OTs }}$	
Piperidine	$p-\mathrm{O}_{2} \mathrm{~N} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{CO}_{2} \mathrm{Et}$	1.73	1.90
Morpholine	$p-\mathrm{O}_{2} \mathrm{~N} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{CO}_{2} \mathrm{Et}$	$1 \cdot 63$	1.75
			${ }_{1.00}^{k_{\text {OMe }} / k_{\mathrm{Ol}}}$	
$p-\mathrm{NCC}_{6} \mathrm{H}_{4} \cdot \mathrm{NH}_{2}$	H	CN		

Table 4
Activation parameters for the reaction of amines with $\mathrm{XCR}: \mathrm{CY}_{2}$ in acetonitrile

				$\Delta H^{\ddagger} a$	$\Delta S^{\ddagger}{ }^{\text {b }}$		ΔH^{\ddagger} a	$\Delta S^{\ddagger}{ }^{\text {b }}$
Amine	R	Y	x	$\overline{\mathrm{kcal} \mathrm{mol}}{ }^{-1}$	$\overline{\text { cal mol }}{ }^{-1} \mathrm{~K}^{-1}$	X	$\overline{\mathrm{kcal} \mathrm{mol}}{ }^{-1}$	$\overline{\mathrm{cal} \mathrm{mol}}{ }^{-1} \mathrm{~K}^{-1}$
$p-\mathrm{MeC}_{6} \mathrm{H}_{4} \cdot \mathrm{NH}_{2}$	H	$\mathrm{CO}_{2} \mathrm{Me}$	Cl	6.0	-42	Br	7.9	-36
$m-\mathrm{MeC}_{6} \mathrm{H}_{4} \cdot \mathrm{NH}_{2}$	H	$\mathrm{CO}_{2} \mathrm{Me}$	Cl	5.9	-44	Br	6.8	-41
PhNH_{2}	H	$\mathrm{CO}_{2} \mathrm{Me}$	Cl	$7 \cdot 3$	-40	Br	6.7	-42
m - $\mathrm{MeOC}_{6} \mathrm{H}_{4} \cdot \mathrm{NH}_{2}$	H	$\mathrm{CO}_{2} \mathrm{Me}$	Cl	7.8	-39	$\stackrel{\mathrm{Br}}{ }$	7.4	-40
$p-\mathrm{BrC}_{6} \mathrm{H}_{4} \cdot \mathrm{NH}_{2}$	H	$\mathrm{CO}_{2} \mathrm{Me}$	Cl	7.6	-41	$\stackrel{\mathrm{Br}}{8}$	7.5	-42
$2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \cdot \mathrm{NH}_{2}$	${ }_{\mathrm{H}}^{\mathrm{H}}$	$\mathrm{CO}_{2} \mathrm{Me}$	Cl	7.0	-45	Br	8.5	-43
$p-\mathrm{NCC}_{6} \mathrm{H}_{4} \cdot \mathrm{NH}_{2}$	H	CN	Cl	$4 \cdot 9$	-41			
Morpholine	$p-\mathrm{O}_{2} \mathrm{~N} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{CO}_{2} \mathrm{Et}$	OTs	$5 \cdot 1$	-50	OBs	6.4	-47
Piperidine	$p-\mathrm{O}_{2} \mathrm{~N} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{CO}_{2} \mathrm{Et}$	OTs	$3 \cdot 1$	-54	OBs	$4 \cdot 9$	-47

Table 5
Reaction of $\mathrm{XCH}: \mathrm{C}(\mathrm{CN})_{2}$ with p-cyanoaniline At $15{ }^{\circ} \mathrm{C}$

At $30^{\circ} \mathrm{C}$

			t $15{ }^{\circ}$						
$(\mathrm{IV}), \mathrm{X}=\mathrm{Cl} \quad$ At $15{ }^{\circ} \mathrm{C}$									
10^{4} [Amine] $/ \mathrm{m}$	$4 \cdot 5$	$9 \cdot 0$	18.0		$4 \cdot 5$	$9 \cdot 0$	$22 \cdot 5$		
$10^{5}[(\mathrm{IV})] / \mathrm{M}$	$4 \cdot 5$	$4 \cdot 5$	$4 \cdot 5$		4.5	$4 \cdot 5$	$4 \cdot 5$		
$k_{\mathrm{obs} /} / \mathrm{mol}^{-1} \mathrm{~s}^{-1}$	$1 \cdot 03$	$1 \cdot 08$	1.09	$1 \cdot 10 \pm 0.04{ }^{\text {a }}$	1.73	$1 \cdot 84$	$1 \cdot 83$	1.75	
$(\mathrm{V}), \mathrm{X}=\mathrm{OMs}$									
10^{4} [Amine]/m					$4 \cdot 0$	$8 \cdot 0$	$8 \cdot 0$	14.0	
$10^{5}[(\mathrm{~V})] / \mathrm{m}$					$4 \cdot 0$	$2 \cdot 1$	$4 \cdot 1$	$4 \cdot 0$	
$k_{\text {obs }} / 1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$					1.64	$1 \cdot 74$	$1 \cdot 71$	1.84	
a Average value of 5-7 experiments.									

Table 6
Reaction of amines with $p-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \cdot \mathrm{C}\left(\mathrm{OSO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{X}-p\right): \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}$ (VI and VII) in acetonitrile At $30{ }^{\circ} \mathrm{C}$

At $40^{\circ} \mathrm{C}$

(VI), $\mathrm{X}=\mathrm{Me}$									
10^{3} [Piperidine]/m	$3 \cdot 2$	$6 \cdot 4$	11.2			$3 \cdot 2$	6.4	$9 \cdot 6$	
$10^{4}[(\mathrm{VI})] / \mathrm{m}$	$4 \cdot 0$	$5 \cdot 6$	$4 \cdot 0$			$4 \cdot 0$	$2 \cdot 8$	4.0	
$10 k_{\text {obs }} / 1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$	$1 \cdot 87$	$2 \cdot 00$	$1 \cdot 78$	1.85	$06{ }^{\text {a }}$	2.25	$2 \cdot 27$	2.22	$2 \cdot 24 \pm 0.02{ }^{\text {b }}$
10^{2} [Morpholine]/m	1.4	$4 \cdot 2$	$6 \cdot 3$	$8 \cdot 4$		$2 \cdot 2$	$4 \cdot 4$	$8 \cdot 8$	
$10^{4}[(\mathrm{VI})] / \mathrm{M}$	$3 \cdot 8$	$3 \cdot 8$	$2 \cdot 3$	$3 \cdot 8$		$4 \cdot 0$	4.0	$4 \cdot 0$	
$10^{2} k_{\text {obs }} / 1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$	$1 \cdot 16$	$1 \cdot 28$	$1 \cdot 20$	1.09	$1.21 \pm 0.06{ }^{\circ}$	1.58	1.57	$1 \cdot 76$	$1.64 \pm 0.07{ }^{\text {b }}$
(VII), $\mathrm{X}=\mathrm{Br}$									
10^{3} [Piperidine] $/ \mathrm{M}$	$3 \cdot 2$	$4 \cdot 8$	$8 \cdot 0$			$3 \cdot 2$	$4 \cdot 8$	6.4	
$10^{4}[(\mathrm{VIII})] / \mathrm{m}$	$4 \cdot 0$	$2 \cdot 4$	$4 \cdot 0$			$4 \cdot 0$	$2 \cdot 8$	4.0	
$10 k_{\text {obs }} / 1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$	3.06	$3 \cdot 12$	$3 \cdot 19$	$3 \cdot 20$	$08{ }^{\text {a }}$	$4 \cdot 50$	$4 \cdot 06$	4.25	$4 \cdot 26 \pm 0 \cdot 12^{\text {b }}$
10^{3} [Morpholine]/m	$1 \cdot 4$	$2 \cdot 8$	$5 \cdot 5$	$8 \cdot 2$		$2 \cdot 0$	8.0	$8 \cdot 0$	
$10^{4}[(\mathrm{VII})] / \mathrm{m}$	$3 \cdot 3$	$3 \cdot 3$	$4 \cdot 4$	$3 \cdot 3$		$4 \cdot 0$	$\stackrel{2}{2 \cdot 8}$	$\stackrel{4 \cdot 0}{ }$	
$10^{2} k_{\text {obs }} / 1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$	1.94	1.90	1.94	2.01	$1.97 \pm 0.04{ }^{\text {a }}$	$2 \cdot 84$	$2 \cdot 87$	$2 \cdot 86$	$2.86 \pm 0.02^{\text {b }}$

${ }^{a}$ Average value of 6 experiments. ${ }^{b}$ Average value of 4 experiments.
(VII). Surprisingly, the analogous reactions with dimethyl p-nitrobenzoylmalonate failed. The reactions of these esters with piperidine and morpholine in acetonitrile were of the second order (Table 6), and the derived activation parameters and the $k_{\mathrm{OBs}} / k_{\mathrm{OTs}}$ ratios are in Tables 3 and 4.

Spectral Data of the Enamines.-The high $\lambda_{\max }$ and ε values of the enamines reflect their highly dipolar nature. The blue shift observed for the 2,6-dimethylanilinoenamine
$\because \mathrm{CH}$ doublet at $\tau 0.81$ changes to a broad singlet at $\tau 1.52$. The low-field position of the $\mathrm{N}-\mathrm{H}$ proton is ascribed to hydrogen bonding between the $\mathrm{N}-\mathrm{H}$ proton and the α-electron-attracting group. Indeed, in the 2,6-dimethylanilinoenamine, where steric effects interfere with hydrogenbond formation, the $\mathrm{N}-\mathrm{H}$ proton is at a higher field. The value of J suggests the predominance of the conformer (VIII) in which the two hydrogens are at anti-positions, in

Table 7
Spectral data for the enamines $\mathrm{R}^{1} \mathrm{C}\left(\mathrm{NR}^{2} \mathrm{R}^{3}\right): \mathrm{CY}_{\mathbf{2}}$

R^{1}	R^{2}	$\mathrm{R}^{\mathbf{3}}$	Y	$\lambda_{\text {max. }} \mathbf{M e C N}(\epsilon) / \mathrm{nm}$	$\nu_{\text {max }} / \mathrm{cm}^{-1}{ }^{\text {a }}$	N.m.r. (τ values) ${ }^{\text {b }}$				
						Ar	Me	$\mathrm{CO}_{2} \mathrm{R}^{4}$:CH	NH
He	$m-\mathrm{MeOC}_{6} \mathrm{H}_{4}{ }^{c}$	He	$\mathrm{CO}_{2} \mathrm{Me}{ }^{\text {c }}$	317 (33,400)	$\begin{aligned} & 3200 \mathrm{w}, 1728 \mathrm{~m}, 1690 \mathrm{~s}, 1645 \mathrm{~s} \text {, } \\ & 1610 \mathrm{~s} \end{aligned}$	2.47-2.90	6.01	6.05; 6.08	1.15 d	c
H	$m-\mathrm{MeC}_{6} \mathrm{H}_{4}$	H	$\mathrm{CO}_{2} \mathrm{Me}$	$315(22,400)$	$\begin{aligned} & 3200-3260 \mathrm{w}, 1730 \mathrm{~m}, 1695 \mathrm{~s} \text {, } \\ & 1650 \mathrm{~s}, 1615 \mathrm{~s} \end{aligned}$	2.73-3.15	$7 \cdot 63$	6.15; 6.22	1.47 d	e
H	Ph	H	$\mathrm{CO}_{2} \mathrm{Me}$	315 (23,900)	$\begin{aligned} & 3240 \mathrm{w}, 1720 \mathrm{~s}, 1680 \mathrm{~s}, 1650 \mathrm{~s} \text {, } \\ & 1610 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 2.68-2.97 f \\ & 2.40-2.77 \mathrm{~g} \end{aligned}$		$\begin{aligned} & 6.25 ; 6.30 f \\ & 6.22 ; 6.27 g \end{aligned}$	$\begin{aligned} & 1.55 \mathrm{~d}, f \\ & 1.46 \mathrm{~g} \end{aligned}$	$\begin{aligned} & -1 \cdot 22 d, f \\ & -0.81 d, 0 \end{aligned}$
$\mathrm{H}^{\boldsymbol{n}}$	2,6-Me2 $\mathrm{C}_{8} \mathrm{H}_{3}{ }^{\text {h }}$	H h	$\mathrm{CO}_{2} \mathrm{Me}$	$289(21,600)$	$\begin{aligned} & 3200 \mathrm{w}, 1725 \mathrm{~m}, 1683 \mathrm{~s}, 1650 \mathrm{~s} \text {, } \\ & 1615 \mathrm{~m} \end{aligned}$	2.951 2.82	7-72 7	$6.13 ; 6.27$ $6.24 ; 6.37$	$\underline{1.94}{ }^{\text {d }}$ d	$\begin{aligned} & -0.1 j \\ & -0.22 j \end{aligned}$
H	$p-\mathrm{BrC}_{6} \mathrm{H}_{4}$	H	$\mathrm{CO}_{2} \mathrm{Me}$	$318 \cdot 5(26,600)$	$3200 \mathrm{w}, 1725 \mathrm{~m}, 1685 \mathrm{~s}, 1645 \mathrm{~s}$, 1610 m	$2.43-3.05$		6.15; 6.23	1.59 d	-1.0j
$\mathrm{H}_{\mathrm{H}}{ }^{\boldsymbol{k}}$	$\underset{p-\mathrm{MeC}_{6} \mathrm{H}_{4}}{ }{ }^{\text {d }}$	$\mathrm{H}_{\mathrm{H}} \boldsymbol{k}$	$\mathrm{CO}_{2} \mathrm{Me} k$	$330(25,300)$	$3260 \mathrm{w}, 1710 \mathrm{~s}, 1660 \mathrm{~s}, 1610 \mathrm{~m}$ $3310,3200 \mathrm{w}, 2220 \mathrm{~s}, \dot{j} 1650 \mathrm{~s}$, 1590 s	$2 \cdot 87-3.19$ $1.70-9.40$	$7 \cdot 72$	6.22; 6.29	1.63 d	
H	$p-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	H	CN	$344 \cdot 5(32,500)$		1.70-2.40			1-30	$-1.45 i, j$
H 6	$p-\mathrm{MeOC}_{6} \mathrm{H}_{4}{ }^{\text {l }}$	H ${ }^{1}$	CN 1	318 (22,000)	$\begin{aligned} & 3290,3210 \mathrm{w}, 2220 \mathrm{~s}, j 1650 \mathrm{~s} \text {, } \\ & 1590 \mathrm{~s} \end{aligned}$	2.60-3.25	6.25		1.87 t, ${ }^{\text {j }}$	-0.78i, j
H	$p-\mathrm{NCC}_{6} \mathrm{H}_{4}$	H	CN	320 (42,000)	$\begin{aligned} & 3190 \mathrm{w}, 2220 \mathrm{~s}, j 1740 \mathrm{~m}, 1660 \mathrm{~s}, \\ & 1600 \mathrm{~m} \end{aligned}$	2.03-2.45			1.33 d	$-1 \cdot 35 d .5$
H	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	H	CN	$317(27,300)$	$3280,3200 \mathrm{w}, 2220,2200 \mathrm{~s}, 1650 \mathrm{~s}$ $3300,3230 \mathrm{w}, 2225,2205 \mathrm{~s}, 1675 \mathrm{~s}$	2.45-2.78			$1.54{ }^{\text {d }}$	-0.69 d, 3
H m	$p-\mathrm{MeC}_{6} \mathrm{H}_{4}{ }^{m}$	H m	CN m	$\begin{aligned} & 288 \cdot 5 \mathrm{sh}(14,000) \\ & 313(23,600) \end{aligned}$		$2.55-2.73$	7.70		1.56 d	$-0.05 \mathrm{dij}$
H	Et	Et	CN	$279 \cdot 5(20,600)$	2210, $2197 \mathrm{~s}, 1620 \mathrm{v}$ n		8.67 o		$2 \cdot 94$ B, 0	
H^{H}	$\mathrm{R}^{2} \mathrm{R}^{3}=$ morph	ino	CN	281 (24,200)	$\begin{aligned} & 2220 \mathrm{~s}, 1630 \mathrm{~s} \\ & 1740 \mathrm{~s}, 1600 \mathrm{~s} \end{aligned}$				2.25 d, p	
$p-\mathrm{O}_{2} \mathrm{NC}_{8} \mathrm{H}_{4}$	$\mathrm{R}^{2} \mathrm{R}^{3}=$ morph	lino	$\mathrm{CO}_{2} \mathrm{Et}$	$\begin{aligned} & 277(20,300) \\ & 353 \cdot 5(4,300) \end{aligned}$		1.55-2.35	8.919			
$p-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	$\mathrm{R}^{\mathbf{2}} \mathrm{R}^{\mathbf{3}}=$ piperidino		$\mathrm{CO}_{3} \mathrm{Et}$	$\begin{aligned} & 282(20,000) \\ & 366 \cdot 5(4450) \end{aligned}$	1760s, 1605w ${ }^{\text {n }}$	1.95-2.63	$8.89{ }^{\text {r }}$			

a In Nujol, unless otherwise stated. ${ }^{b} \mathrm{In}_{\mathrm{CDCl}}^{3}$ for the enaminodiesters, in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ for the enaminodinitriles. Integration and multiplicity are in agreement with the
assignments. © Mass spectrum: $m / e 265(83 \%, M), 233(26, M-\mathrm{OMe}-\mathrm{H}), 232$ (base peak, $M-\mathrm{MeO}-2 \mathrm{H}), 205(46, M-\mathrm{HCO} \mathrm{Me}), 202(23), 174(75, M-\mathrm{MeO}-$
$\left.\mathrm{HCO}_{2} \mathrm{Me}\right), 160(20), 146(22), 132(20), 107(26), 77(34)$ d Doublet, $J 14 \mathrm{~Hz}$. The internal line of the doublet is slightly higher than the external line. e Not observed.
$f \mathrm{In} \mathrm{CCl}_{4}, \quad \mathrm{In}\left(\mathrm{CD}_{2}\right) \mathrm{SO} . \quad h$ Mass spectrum: $m / e 263(57 \%, M), 233$ (base peak, $\left.M-2 \mathrm{Me}\right), 199(23), 172(62, M-\mathrm{MeO}-\mathrm{HCO} \mathrm{Me}), 160(23), 158(28), 144(61, M-$
$155(15, M-\mathrm{H}-\mathrm{HCN}), 156(5, M-\mathrm{HCN}), 119[15, M-\mathrm{C}(\mathrm{CN}) \mathbf{2}], 107$ (33), 106 (50 , Me-azatropylium), 91 (22, tropylium). \boldsymbol{m} In KBr. 0 Centres of the two methylene
quartets $\tau 6.27$ and 6.52 . p Centre of the methylene absorption $\tau 6.23$. q Centre of the methylene quartet $\tau 5 \cdot 87$; the morpholino-protons appear as two multiplets of
is noteworthy since $\lambda_{\max }$ changes much less between the 2,6-diethyl and the 4 -methyl derivatives in the p $\mathrm{Me}_{2} \mathrm{~N} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{C}(\mathrm{ArNH}) \cdot \mathrm{C}(\mathrm{CN})_{2}$ system. ${ }^{13 a}$ There is an i.r. band for hydrogen-bonded $\mathrm{N}-\mathrm{H}$, and in most of the cyanoenamines the $\mathrm{C} \equiv \mathrm{N}$ stretching appears as a strong doublet of bands of equal intensity $10-20 \mathrm{~cm}^{-1}$ apart. Splitting of the $\mathrm{C} \equiv \mathrm{N}$ band occurs with many $\alpha \alpha$-dicyano-compounds which are substituted by electron-donating groups. ${ }^{14}$ The band for the ethoxycarbonyl group is also a doublet (it being assumed that the band at $c a .1690 \mathrm{~cm}^{-1}$ is not a $\mathrm{C}-\mathrm{N}$ bending, which appears at a lower wavelength in the cyanoenamines). The n.m.r. spectrum shows the vinylic hydrogen as a doublet in most of the systems. In the dicyanoenamines, this is clearly due to a coupling to the $\mathrm{N}-\mathrm{H}$ proton which appears as a broad doublet with the same J value (14 Hz) at a lower field. In the p-nitro- and the p-methoxy-dicyanoenamines both the $\mathrm{N}-\mathrm{H}$ and the $: \mathrm{CH}$ signals appear as a broad singlet. When a solution of the p-cyanodicyanoenamine is shaken with excess of $\mathrm{D}_{2} \mathrm{O}$ and the spectrum is taken after 1 min , the $\mathrm{N}-\mathrm{H}$ absorption at $\tau-1.35$ disappears and the doublet for the $: \mathrm{CH}$ collapses to a singlet at $\tau 1.44$. When the anilinodimethoxycarbonylenaminein dimethyl sulphoxide is shaken with $\mathrm{D}_{2} \mathrm{O}$, the $\mathrm{N}-\mathrm{H}$ doublet at $\tau-1.46$ disappears and the

[^2]analogy with the coupling observed for formamide (IX) where $J_{\mathrm{bc}}=13 \mathrm{~Hz}$ and $J_{\mathrm{ac}}=2 \cdot 1 \mathrm{~Hz} .{ }^{15}$

(VIIT)

(IX)

In the mass spectra of the dicyanoenamines the molecular peak is the base peak and fragments corresponding to the loss of $\mathrm{Me}, \mathrm{HCN}, \mathrm{CH}(\mathrm{CN})_{2}$, and $\mathrm{C}(\mathrm{CN})_{2}$ units as well as those for tropylium and substituted tropylium ions were observed. In the dimethoxycarbonylenamines the base peak usually corresponds to the fragment found after the loss of methyl or methoxyl radicals. The spectral data are in Table 7.

DISCUSSION

All three sets of reactions are of the first order in the amine. The absence of a second-order term for the amine [as found for (I) and related systems] ${ }^{13,16}$ shows that expulsion of the leaving group is faster than the amine-catalysed proton expulsion from the zwitterionic intermediate. In terms of equation (1), $k_{2} \gg k_{2 A}$.
${ }^{16}$ (a) Z. Rappoport and P. Peled, unpublished results. (b) Z. Rappoport and D. Ladkani, unpublished results.

Since anilinium ions can be good leaving groups, in the two limiting cases $k_{2} \gg k_{-1}$ and $k_{\text {obs }}=k_{1}$ or $k_{-1} \gg k_{2}$ and $k_{\text {obs }}=k_{1} k_{2} / k_{-1}$. Which case prevails, and the use of $k_{\mathrm{Br}} / k_{\mathrm{Ol}}, k_{\mathrm{OMs}} / k_{\mathrm{Cl}}$, and $k_{\mathrm{OBs}} / k_{\mathrm{OTs}}$ as mechanistic probes is discussed separately for each system.

Reaction Series (a). Bromide-Chloride Reactivity Ratios.-The $k_{\mathrm{Br}} / k_{\mathrm{Cl}}$ ratios near unity (Table 3) are similar to those observed for the vinylic substitutions of α-arylsulphonyl- β-halogenoethylenes by several nucleophiles ${ }^{17,18}$ including amines. The element effect expected for a one-step substitution would be much higher than unity. It is therefore likely that bond formation between the nucleophile and the β-carbon precedes the carbon-halogen bond breaking and k_{1} is rate-determining in the formation of the zwitterionic intermediate. The similar reactivities are due to the similar inductive and resonance effects of the two halogens which affect similarly the electrophilicity of the β-carbon.

The other limiting possibility is that $k_{-1} \gg k_{2}$ and $k_{\text {obs }}=k_{1} k_{2} / k_{-1}$. Since the bond-breaking step should show a high $k_{2}(\mathrm{Br}) / k_{2}(\mathrm{Cl})$ element effect, the observed element effects require that the carbon basicity $\left(k_{1} / k_{-1}\right)(\mathrm{Cl})$ of the vinyl chlorides towards the anilines must be much higher than the $\left(k_{\mathbf{1}} / k_{-1}\right)(\mathrm{Br})$ values of the vinyl bromide and that $\left(k_{1} / k_{-1}\right)(\mathrm{Cl}) /\left(k_{1} / k_{-1}\right)(\mathrm{Br}) \simeq$ $k_{2}(\mathrm{Br}) / k_{2}(\mathrm{Cl})$ for the whole series of amines. Since $k_{1}(\mathrm{Br}) / k_{1}(\mathrm{Cl})$ for other nucleophilic vinylic reactions is not far from unity ${ }^{2}$ it follows that $k_{-1}(\mathrm{Br}) / k_{-1}(\mathrm{Cl}) \sim$ $k_{2}(\mathrm{Br}) / k_{2}(\mathrm{Cl})$. For steric reasons it is possible that $k_{-1}(\mathrm{Br}) / k_{-1}(\mathrm{Cl})>1$ for the m - and the p-anilinozwitterions. However, the very similar element effect for the reaction of the bulky 2,6-dimethylaniline would require a very unlikely cancelling effect of the rate coefficients above for all the amines. It is much more likely that $k_{\mathbf{1}}$ is rate-determining. The fact that 2,6dimethylaniline reacts 33 times more slowly than p-toluidine then reflects the steric hindrance of two methyl groups to attack on the double bond. Similarly, 2,4,6-trimethylaniline reacts 110 times more slowly than p-toluidine with ($\mathrm{I} ; \mathrm{X}=\mathrm{F}$). ${ }^{13 a}$

Tables 2 and 4 give values for the activation parameters and for the Hammett ρ value for the k_{1} step, and these can be used as approximations for these values in systems of related structure [such as (I)] for which the rate coefficient is composite. When these values are applied for the reaction of ($\mathrm{I} ; \mathrm{X}=\mathrm{Cl}$) with anilines in acetonitrile (where $k_{\text {obs }}=k_{1} k_{2} / k_{-1}, \quad \Delta H^{\ddagger}=6.7-10.9$ $\mathrm{kcal} \mathrm{mol}^{-1}, \Delta S^{\ddagger}=-43$ to $\left.-52 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)^{13 a}$ it is found that the ($\Delta H_{2} \ddagger-\Delta H_{-1}{ }^{\ddagger}$) and the ($\Delta S_{2}^{\ddagger}-\Delta S_{-1}{ }^{\ddagger}$) terms are low as expected for the k_{2} and the k_{-1} steps. Further, since $\rho\left(=\rho_{1}+\rho_{2}-\rho_{-1}\right)=-3.88\left(\right.$ at $\left.30{ }^{\circ} \mathrm{C}\right)$

[^3]for this reaction, ${ }^{13 a} \rho_{2}-\rho_{-1}$ should be negative or close to zero.

The reactions of α-chloro- β-nitrostyrene with the same anilines in acetonitrile ${ }^{19}$ are one order of magnitude slower. This is due to a $10 \mathrm{cal} \mathrm{mol}{ }^{-1} \mathrm{~K}^{-1}$ lower $\Delta S \ddagger$, although ΔH^{\ddagger} is also $2 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ lower. Our ρ value (Table 2) is lower than the value of $p=-3 \cdot 4$ for α-chloro- β-nitrostyrenes, ${ }^{19}$ in line with the reactivityselectivity principle. This cautions against using a single nucleophile (e.g., aniline) for establishing a quantitative scale for the activation by various α groups. ${ }^{20}$ The knowledge of p values for the series of nucleophiles (e.g., anilines) with each of the electrophilic olefins is also required.

Reaction Series (b). Mesylate-Chloride Reactivity Ratio.-In saturated systems the $k_{\mathrm{OTs}} / k_{\mathrm{Bs}}$ ratios are used as a probe for distinguishing between the $S_{N} 1$ and the $S_{\mathrm{N}} 2$ routes, and for estimation of the charge separation in the transition state. ${ }^{10}$ Our $k_{\mathrm{OMs}} / k_{\mathrm{Ol}}$ ratio of unity should be comparable with the (unavailable) $k_{\mathrm{OTs}} / k_{\mathrm{Br}}$ ratio in our system since $k_{\mathrm{Br}} / k_{\mathrm{Cl}}$ ratios are close to unity (see above) and saturated tosylates and mesylates solvolyse with very similar rates. ${ }^{21}$

The mesylate should react much more rapidly if k_{2} is rate-determining and arguments similar to those used above point to k_{1} as being rate-determining. The mesylate-chloride reactivity ratio measures the relative activation of the β-carbon in a pure bond-forming process. When the $k_{\mathrm{OTs}} / k_{\mathrm{Br}}$ ratio reflect only bond breaking, as in the solvolyses of tertiary systems ${ }^{11}$ or the adamantan-2-yl system ${ }^{22}$ the $k_{\mathrm{OTs}} / k_{\mathrm{Br}}$ ratios are of the order $10^{2}-10^{3}$. Cockerill pointed out in discussing $E 1 c B$ eliminations ${ }^{23}$ that $k_{\mathrm{OTs}} / k_{\mathrm{Br}}$ ratios do not necessarily increase monotonically with the amount of the carbon-leaving group bond breaking. He suggested that the ratios are slightly higher than unity for the extreme case (which according to him is unachievable) where no bond-breaking occurs, since the tosylate group ($\sigma^{*}=1.31$) is slightly more electron-attracting than bromide ($\sigma^{*}=\mathbf{1} \cdot 00$). The ratios decrease and then increase when first the higher polarisability of the bromide and then the higher delocalisation ability of the tosylate gain in importance. ${ }^{23}$ Our $k_{\mathrm{OMs}} / k_{\mathrm{Cl}}$ ratio of unity fits this picture since $\sigma^{*}{ }_{\mathrm{oms}}$ should be only slightly lower than $\sigma^{*}{ }_{0 T \mathrm{~T}}$, thus giving the experimental information for the 'unachievable' case when the two leaving groups exert their inductive effects with no bondcleavage. The use of data from nucleophilic vinylic reactions to $E 1 c B$ eliminations is allowed, since the latter is the reversal of the nucleophilic vinylic addition.

The alternative explanation is that the low $k_{\mathrm{OMs}} / k_{\mathrm{Cl}}$
${ }^{21}$ E.g., D. S. Noyce, B. E. Johnston, and B. Weinstein, J. Org. Chem., 1969, 34, 463; R. S. Bly and R. Veazey, J. Amer. Chem. Soc., 1969, 91, 4221; R. S. Bly, R. C. Strickland, R. T. Swindell, and R. L. Veazey, ibid., 1970, 92, 3722.
${ }^{22}$ J. L. Fry, C. J. Lancelot, L. K. M. Lam, J. M. Harris, R. C. Bingham D. J. Raber, R. E. Hall, and P. v. R. Schleyer, J. Amer. Chem. Soc., 1970, 92, 2538.
${ }^{23}$ A. F. Cockerill, Tetrahedron Letters, 1969, 4913; J. Banger, A. F. Cockerill, and G. L. O. Davies, J. Chem. Soc. (B), 1971, 498.
ratios are due to a one-step $S_{\mathrm{N}} 2$ reaction with a small degree of $\mathrm{C}-\mathrm{X}$ bond cleavage in the transition state. It is much less plausible since a one-step vinylic $S_{\mathrm{N}} 2$ reaction was not yet observed. ${ }^{2}$

The $k_{\mathrm{OTs}} / k_{\mathrm{Br}}$ and the $k_{\mathrm{OMs}} / k_{\mathrm{OI}}$ ratios may serve as a tool for distinguishing between the vinylic $S_{\mathrm{N}} 1$ and the $A d_{\mathrm{N}}-E$ routes. We found recently values of $k_{\mathrm{OTs}} / k_{\mathrm{Br}}$ ratios of $20-87,9 b, 24 \quad k_{\mathrm{OTs}} / k_{\mathrm{OMs}}$ ratio of $2^{9 b}$ and $k_{\mathrm{Br}} / k_{\mathrm{Ol}}$ ratios of $10-75^{5,25}$ for several vinylic $S_{\mathrm{N}} 1$ solvolyses. The expected $k_{\mathrm{OMs}} / k_{\mathrm{Ol}}$ ratios for $S_{\mathrm{N}} \mathrm{l}$ reactions are therefore several hundreds as compared with unity in the $A d_{\mathrm{N}}-E$ route. These ratios are sensitive enough even to detect a few percent of the $S_{\mathrm{N}} 1$ route in competition with the main $A d_{\mathrm{N}}-E$ route.

Reaction Series (c). Brosylate-Tosylate Reactivity Ratios.-Our $k_{\mathrm{OBs}} / k_{\mathrm{OTs}}$ reactivity ratios of $\mathbf{1 . 6 3 - 1 . 9 0}$ (Table 3) correspond to Hammett ρ values of $0.53-0.69$ and they are the lowest observed for nucleophilic displacement of these leaving groups. The values of $k_{\mathrm{OBS}} / k_{\mathrm{OTs}}$ in solvolyses are $\mathbf{3}$ or higher for $S_{\mathrm{N}} 1$ reactions ($\rho=1 \cdot 2$) ${ }^{26}$ while the low values observed for primary arylsulphonates ${ }^{27}$ were ascribed to solvent participation in the transition state. ${ }^{8}$ Our values fit a rate-determining bond-formation, when the differences between the two groups reflect the higher electron-withdrawing ability of the brosylate group, and correspondingly the higher electrophilicity of C_{β} of (VII) than of (VI).

However, the activation enthalpies (Table 4) are very low. Indeed, if the activation entropies would not be so strongly negative owing to the formation of the zwitterionic transition state, the reaction rates would be enormously high. We ascribed ${ }^{\mathbf{1 2 , 1 3 , 2 8}}$ such low activation enthalpies in nucleophilic vinylic reactions to composite rate coefficients, which in our case would amount to $k_{\text {obs }}=k_{1} k_{2} / k_{-1}$. Moreover, the aryl group on the β-carbon seems to accelerate more the k_{-1} than the k_{2} step as shown by the base-catalysis observed for (I; $\mathrm{X}=\mathrm{Cl})^{13 a}$ but not for our β-halogeno- $\alpha \alpha$-dicyanoethylenes. An argument against a composite rate coefficient is that in the decarboxylative elimination from $\mathrm{Ar}^{1} \mathrm{C}\left(\mathrm{OSO}_{2} \mathrm{Ar}^{2}\right): \mathrm{C}\left(\mathrm{CO}_{2}^{-}\right)_{2}$ in which the arylsulphonate group and the carbon dioxide are lost simultaneously, the ρ value ($1 \cdot 16$) is still higher than in our case. ${ }^{8}$ Since k_{1} / k_{-1} is probably somewhat higher for (VII) than for (VI), a higher $k_{\mathrm{OBs}} / k_{\mathrm{OTs}}$ ratio is expected for the case when $k_{2} \ll k_{-1}$.

The differences between the $k_{\mathrm{OBs}} / k_{\mathrm{OTs}}$ ratios in the $A d_{\mathrm{N}}-E$ route and the ratios observed for the vinylic $S_{\mathrm{N}} \mathrm{l}$ route $(2 \cdot 3-5 \cdot 0)^{76,9}$ allow the use of such ratios for distinguishing between the two routes. It is more

[^4]important that $k_{\mathrm{OBs}} / k_{\mathrm{OTs}}$ ratios of 0.3 were found ${ }^{7 a}$ for vinylic substitutions via electrophilic addition-elimination $\left(A d_{\mathrm{E}}-E\right)$ where protonation of the double bond is rate-determining [equation (8)]. ${ }^{7 a, 29}$ The $k_{\text {OBs }} / k_{\mathrm{OTs}}$ ratios can be therefore used to distinguish between the electrophilic and the nucleophilic addition-elimination routes, which are both possible with substrates such as $9-[\alpha-$ (arylsulphonyloxy)arylidene]fluorene in $\mathrm{AcOH}-\mathrm{NaOAc}$ mixture.

Piperidine-Morpholine Reactivity Ratio.-Piperidine and morpholine were chosen as nucleophiles towards the nitrophenylethylenes (VI) and (VII) since they differ appreciably in their basicity but not in their steric effects. The $k_{\text {pip }} / k_{\text {morp }}$ reactivity ratios of $13.7-16.2$ correspond to Brønsted α 's of $c a .0 .5$ when the $\mathrm{p} K_{\mathrm{a}}$'s of the amines in acetonitrile are used. ${ }^{30}$ Ratios of 7-30 were found for the addition of these two amines to p-tolyl vinyl sulphone, ${ }^{31}$ for their reactions with n-butyl and p-nitrobenzyl bromides, ${ }^{32 a}$ and for the reaction with p-nitrophenyl acetate, ${ }^{32 b}$ but the ratio is only 2.7 in the reaction with methyl iodideinwater. ${ }^{32 b} \quad \mathrm{~A} k_{\text {pip }} / k_{\text {morp }}$ value lower than unity was observed for the displacement of the vinylic ethoxy-group of ($\mathrm{I} ; \mathrm{X}=\mathrm{OEt}$) in acetonitrile. ${ }^{16 a}$ Our present value can be taken as an approximation for the ratio expected for the initial addition step to ($\mathrm{I} ; \mathrm{X}=\mathrm{OEt}$) in this multi-step reaction.

The Effects of α - and β-Substituents.-The present work enables us to make some indirect comparisons regarding the activation by α - and β-substituents. By using the Hammett relationship the extrapolated $k_{\text {obs }}$ for the reaction of (II) with p-cyanoaniline is 1.77×10^{-8} $1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ at $30^{\circ} \mathrm{C}$. Two α-cyano-groups are therefore 100 times more activating than two α-methoxycarbonyl groups. This fits the fact that the hydroxide-catalysed cleavage of $p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \cdot \mathrm{CH}: \mathrm{CXY}$ is 8.3 times faster when $\mathrm{X}=\mathrm{Y}=\mathrm{CN}$ than when $\mathrm{X}=\mathrm{CN}, \mathrm{Y}=\mathrm{CO}_{2} \mathrm{Et} .{ }^{33}$

The reaction of p-cyanoaniline with (IV) is 1.7×10^{6} times faster than that with ($\mathrm{I} ; \mathrm{X}=\mathrm{Cl}$), whereby the Hammett relationship $k_{\text {obs }}=10^{-6} 1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1} .^{13 a}$ Large reduction in the reactivity in nucleophilic vinylic addition was observed previously ${ }^{20}$ when a vinylic β-hydrogen was replaced by a β-aryl group. This is probably due to increased ground-state stabilisation by aryl-double bond conjugation, and also to the reversibility of the first step in the case of the aryl derivatives.

[^5]
EXPERIMENTAL

Solvent.-Acetonitrile (Baker Analysed) was dried for one day and then refluxed for 5 h over $\mathrm{P}_{2} \mathrm{O}_{5}$, distilled through a fractionating column, and the middle fraction, b.p. $78.5^{\circ} \mathrm{C}$, was used.

Materials.- 1-Chloro-2,2-dimethoxycarbonylethylene (II), b.p. $109^{\circ} \mathrm{C} / 20 \mathrm{mmHg}$ (Found: C, $40 \cdot 5 ; \mathrm{H}, 4 \cdot 1$. Calc. for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{ClO}_{4}$: C, $40 \cdot 3 ; \mathrm{H}, 3.9 \%$), $\nu_{\text {max. }}(\mathrm{KBr}) 3085$ $(\mathrm{w}, \mathrm{C}-\mathrm{H}), 1740\left(\mathrm{~s}, \mathrm{CO}_{2} \mathrm{R}\right)$, and $1612 \mathrm{~cm}^{-1}(\mathrm{~m}, \mathrm{C}: \mathrm{C})$, was prepared in 70% yield from dimethyl hydroxymethylenemalonate (formed in 95% yield from ethyl formate and dimethyl malonate) and phosphorus pentachloride according to Shvo and Osman. ${ }^{34}$ 1-Chloro-2,2-dicyanoethylene (IV) was prepared according to Josey and his co-workers. ${ }^{35}$ 2,2-Diethoxycarbonyl-p-nitrophenylvinyl p-bromobenzenesulphonate (VII), m.p. $125-128{ }^{\circ} \mathrm{C}$ (lit., ${ }^{36} 125-126^{\circ} \mathrm{C}$) was prepared in 60% yield from diethyl p-nitrobenzoylmalonate according to Brown and Harley-Mason; ${ }^{36}$ $\lambda_{\max }$ (MeCN): $241 \cdot 5 \mathrm{~nm}$ (ε 25,400); $\nu_{\max }$ (Nujol) 1725 $\left(\mathrm{CO}_{2} \mathrm{Et}\right), 1630(\mathrm{C}: \mathrm{C}), 1580$ and $1560\left(\mathrm{NO}_{2}\right) \mathrm{cm}^{-1}, \tau\left(\mathrm{CDCl}_{3}\right)$ $8.50-9.03(6 \mathrm{H}, 2 \mathrm{t}, 2 \mathrm{Me}), 5 \cdot 60-5.97\left(4 \mathrm{H}, 2 \mathrm{q}, 2 \mathrm{CH}_{2}\right)$, and $\mathbf{1} \cdot 60-2 \cdot 60(8 \mathrm{H}, 2 \mathrm{q}, 2 \mathrm{Ar})$.

1-Bromo-2,2-dimethoxycarbonylethylene (III).-The sodium salt of dimethyl hydroxymethylenemalonate was prepared by analogy to the preparation of sodium alkoxymethylenemalononitrile ${ }^{35}$ in 95% yield. To a suspension of the salt ($10 \mathrm{~g}, 55 \mathrm{mmol}$) in carbon tetrachloride (50 ml), a mixture of phosphorus tribromide ($14.9 \mathrm{~g}, 55 \mathrm{mmol}$) and bromine $(8.8 \mathrm{~g}, 55 \mathrm{mmol})$ in dry carbon tetrachloride (50 ml) was added. The mixture was refluxed with stirring for 2 h and poured into ice-water (100 ml). The organic layer was separated, washed with dilute sodium thiosulphate solution, dried $\left(\mathrm{CaCl}_{2}\right)$, and distilled. The fraction boiling at $112-$ $118^{\circ} \mathrm{C} / 6 \mathrm{mmHg}$ was purified by chromatography over silica, with light petroleum and benzene as eluants, giving $1.4 \mathrm{~g}(10 \%)$ of (III) as a colourless liquid (Found: C, 32.6; $\mathrm{H}, \mathbf{2 \cdot 8} ; \mathrm{Br}, \mathbf{3 6 \cdot 1}$. Calc. for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{BrO}_{4}$: C, $32 \cdot 35 ; \mathrm{H}, \mathbf{3 \cdot 1}$; $\mathrm{Br}, 35 \cdot 8 \%$); $\lambda_{\text {max. }}(\mathrm{MeCN}) 231 \mathrm{~nm}(\varepsilon 10,000)$, $\nu_{\text {max }}$ (Nujol) $3070(\mathrm{H}-\mathrm{C}), 1745,.1725\left(\mathrm{CO}_{2} \mathrm{Me}\right), 1610(\mathrm{C}: \mathrm{C})$, and strong bands at $1435,1325,1255$, and $1068 \mathrm{~cm}^{-1}, \tau\left(\mathrm{CCl}_{4}\right) 6 \cdot 13$ and $6.20(6 \mathrm{H}, 2 \mathrm{~s}, 2 \mathrm{Me})$ and $2 \cdot 22(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C}$.$) .$

2,2-Dicyanovinyl Methanesulphonate (V).-A solution of silver methanesulphonate ($1 \mathrm{~g}, 9.6 \mathrm{mmol}$) in dry acetonitrile (40 ml) was added to a solution of 1-chloro-2,2-dicyanoethylene ($2 \mathrm{~g}, 17.8 \mathrm{mmol}$) in acetonitrile (20 ml). After 1 h , the silver chloride was filtered off, the solvent was evaporated, the residue dissolved in chloroform, the remaining silver salts were filtered off, and on cooling $0.5 \mathrm{~g}(31 \%)$ of white plates of (V), m.p. $85-87^{\circ} \mathrm{C}$ were obtained (Found: $\mathrm{C}, 34 \cdot 7$; H, 2.5 ; $\mathrm{N}, 16.0 ; \mathrm{S}, 18.4 . \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires C , $34.9 ; \mathrm{H}, 2.3 ; \mathrm{N}, 16.3$; S, 18.6%); $\lambda_{\text {max }}(\mathrm{MeCN}) 233 \mathrm{~nm}$ ($\varepsilon 14,000$), $\nu_{\text {max. }}(\mathrm{KBr}) 2230(\mathrm{~s}, \mathrm{C} \equiv \mathrm{N}), 2195(\mathrm{~s}, \mathrm{C}=\mathrm{N})$, and $1630\left(\mathrm{~s}, \mathrm{C}: \mathrm{C}^{\text {max. }} \mathrm{cm}^{-1}, \tau\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 6.41(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})\right.$ and 1.35 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-\mathrm{C}$:).

2,2-Diethoxycarbonyl-1-p-nitrophenylvinyl Toluene-psulphonate (VI).-This compound was prepared by a modification of the method of Fleming and Owen. ${ }^{37}$ Diethyl p-nitrobenzoylmalonate ($\mathbf{7 . 7 3 \mathrm { g } , 2 5 \mathrm { mmol } \text {) was added }}$ to a stirred solution of sodium ($0.58 \mathrm{~g}, 25 \mathrm{mmol}$) in ethanol $(150 \mathrm{ml})$. The yellow sodium salt was precipitated quantitatively, filtered off, and dried. To a suspension of the salt in dry acetonitrile (100 ml), toluene- p-sulphonic

34 T. Shvo and R. Osman, unpublished results.
${ }^{35}$ A. D. Josey, C. C. Dickinson, K. C. Dewhirst, and B. C. McKusick, J. Org. Chem., 1967, 32, 194.
anhydride ($9 \mathrm{~g}, \mathbf{2 7 . 5 \mathrm { mmol } \text {) was added and the mixture was }}$ refluxed for 2 h . The solvent was removed in vacuo and the residue was shaken with ether $(100 \mathrm{ml})$ and dilute sodium hydroxide solution (100 ml). The organic layer was separated, washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated, and the residue was crystallised from ethanol, giving $11.5 \mathrm{~g}(70 \%)$ of pale yellow crystals of (VI), m.p. 92- 93° (Found: C, 54.7; H, 4.8; N, 3.1; S, 7.3. $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{9} \mathrm{~S}$ requires C, $54.8 ; \mathrm{H}, 4.5 ; \mathrm{N}, 3.0 ; \mathrm{S}, 6.9 \%)$; $\lambda_{\text {max. }}(\mathrm{MeCN})$ $230(\varepsilon 20,000)$ and $276 \mathrm{~nm}(\varepsilon 12,300), \nu_{\text {max }}$ (Nujol) 3110 (w, $\mathrm{C}-\mathrm{H}), 1740,1700\left(\mathrm{~s}, \mathrm{CO}_{2} \mathrm{Et}\right), 1625(\mathrm{C}: \mathrm{C})$, and $1595\left(\mathrm{NO}_{2}\right)$ $\mathrm{cm}^{-1}, \tau\left(\mathrm{CDCl}_{3}\right) 8.95(3 \mathrm{H}, \mathrm{t}, \mathrm{Me}), 8.67(3 \mathrm{H}, \mathrm{t}, \mathrm{Me}), 7.60(3 \mathrm{H}$, $\mathrm{s}, \mathrm{Me}), 5.50-6.02\left(4 \mathrm{H}, 2\right.$ merging $\left.\mathrm{q}, 2 \mathrm{CH}_{2}\right)$, and $1.89-2.90$ ($8 \mathrm{H}, 2$ merging $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{q}, \mathrm{Ar}$).

Dimethyl p-Nitrobenzoylmalonate.-(a) Dimethyl methoxymagnesiummalonate was prepared by Bowman's method ${ }^{38}$ for the preparation of the ethoxy-analogue.
(b) To the above ester which was prepared from magnesium ($9.2 \mathrm{~g}, 0.38 \mathrm{~mol}$) and dimethyl malonate $(50.2 \mathrm{~g}$, 0.38 mol) in benzene (40 ml), p-nitrobenzoyl chloride $(35.2 \mathrm{~g}$, 0.19 mol) in dry benzene (20 ml) was added during 10 min , and the mixture was refluxed for 1 h . The cooled solution was decomposed by addition of ice and dilute sulphuric acid, the organic layer washed with a solution of dilute sulphuric acid, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was evaporated in vacuo at room temperature, and the excess of dimethyl malonate was recovered by distillation at 0.5 mmHg (bathtemp. $100^{\circ} \mathrm{C}$). The crude solid fraction was recrystallised from methanol, giving dimethyl p-nitrobenzoylmalonate (3 g) as yellow crystals, m.p. $95-97{ }^{\circ} \mathrm{C}$ (Found: C, $51 \cdot 4$; $\mathrm{H}, 3 \cdot 9 ; \mathrm{N}, 5 \cdot 3$. $\quad \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{7}$ requires $\mathrm{C}, 51 \cdot 3 ; \mathrm{H}, 3 \cdot 9 ; \mathrm{N}$, $5 \cdot 0 \%$).

Attempted Brosylation of Dimethyl p -Nitrobenzoylmalonate. -Sodium ($0.16 \mathrm{~g}, 7 \cdot 1 \mathrm{mmol}$) in methanol $(10 \mathrm{ml})$ was added to dimethyl p-nitrobenzoylmalonate ($2 \mathrm{~g}, 7 \cdot 1 \mathrm{mmol}$) in methanol (15 ml). The cooled solution was treated with p-bromobenzenesulphonyl chloride ($1.8 \mathrm{~g}, 7.1 \mathrm{mmol}$) in methanol (15 ml), the reaction mixture was allowed to stand for 2 days at room temperature, the solvent was evaporated, the residue shaken with ether (50 ml) and very dilute sodium hydroxide solution, and the ether layer was dried and evaporated. Attempts at crystallisation gave no vinyl brosylate, and only p-bromobenzenesulphonic acid was isolated.

Preparation of the Enamines.-Two equiv. of the amine were added to one equiv. of compounds (II), (IV), or (VII) in dry acetonitrile until a homogeneous solution was formed. The alkyl- or aryl-ammonium salt was filtered off after 1 h , the solvent was evaporated, the residue was dissolved in dry ether, the remaining salts were filtered off, the ether was evaporated, and the oil obtained was recrystallised or purified by chromatography. Analytical and physical properties of the enamines are in Table 8. The isolated yields of the enamines were $85-90 \%$ of the dicyanoenamines, $20-50 \%$ of the more soluble dimethoxycarbonylenamines, and $50-60 \%$ of the morpholino- and the piperidino-p-nitrophenylenamines. The u.v. spectra of the reaction mixtures showed however that the enamines were formed in quantitative yield.

Kinetic Procedure.-Stock solutions of the reactants were prepared daily, the samples were mixed at the reaction
${ }^{36}$ E. T. P. Brown and J. Harley-Mason, J. Chem. Soc. (C), 1966, 1390.
${ }^{37}$ I. Fleming and C. R. Owen, J. Chem. Soc., 1971, 2013.
${ }^{38}$ R. E. Bowman, J. Chem. Soc., 1950, 322.

Table 8
Enamines $\mathrm{R}^{1} \mathrm{C}\left(\mathrm{NR}^{2} \mathrm{R}^{3}\right): \mathrm{CX}_{2}$

R^{1}	R^{2}		X	M.p. $/{ }^{\circ} \mathrm{C}$	Colour ${ }^{\text {a }}$	Crystal-b lisation solvent	Found \%			Analysis		Required \%			
		\mathbf{R}^{3}					C	H	N	Hal	Formula	C	H	N	Hal
H	$p-\mathrm{MeC}_{6} \mathrm{H}_{4}$	H	$\mathrm{CO}_{2} \mathrm{Me}$	108-110		A	62.5	6.1	$5 \cdot 7$		$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{4}$	$62 \cdot 6$	$6 \cdot 1$	$5 \cdot 6$	
H	$p-\mathrm{BrC}_{6} \mathrm{H}_{4}$	H	$\mathrm{CO}_{2} \mathrm{Me}$	116-117	Brown	A	$45 \cdot 6$	$3 \cdot 9$	$4 \cdot 3$	$25 \cdot 7$	$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{BrNO}_{4}$	$45 \cdot 9$	$3 \cdot 8$	$4 \cdot 45$	$25 \cdot 9$
H	$m-\mathrm{MeC}_{6} \mathrm{H}_{4}$	H	$\mathrm{CO}_{2} \mathrm{Me}$	$90-92$		A	$62 \cdot 6$	$6 \cdot 1$	$5 \cdot 8$		$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{4}$	$62 \cdot 6$	$6 \cdot 1$	$5 \cdot 6$	
H	$m-\mathrm{MeOC}_{8} \mathrm{H}$	H	$\mathrm{CO}_{3} \mathrm{Me}$	75-76		A	$59 \cdot 1$	$5 \cdot 8$	$5 \cdot 3$		$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{5}$	$58 \cdot 9$	$5 \cdot 7$	$5 \cdot 3$	
H	Ph	H	$\mathrm{CO}_{2} \mathrm{Me}$	47		A	61.2	$5 \cdot 7$	$6 \cdot 1$		$\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{NO}_{4}$	$61 \cdot 3$	$5 \cdot 6$	$5 \cdot 95$	
H	2,6-Me2 $\mathrm{C}_{8} \mathrm{H}$	H	$\mathrm{CO}_{2} \mathrm{Me}$	103-104		A	63.7	$6 \cdot 4$	$5 \cdot 35$		$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{4}$	$63 \cdot 9$	6.5	$5 \cdot 3$	
H	$p-\mathrm{NCC}_{6} \mathrm{H}_{4}$	H	CN^{2}	288		B	$67 \cdot 7$	$3 \cdot 3$	$29 \cdot 0$		$\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{~N}_{4}$	68.0	$3 \cdot 5$	28.9	
H	$p-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	H	CN	235	Yellow	B	$56 \cdot 0$	$3 \cdot 0$	$26 \cdot 2$		$\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{2}$	$56 \cdot 1$	2.8	26.2	
H	$p-\mathrm{MeC}_{6} \mathrm{H}_{4}$	H	CN	297		B	$72 \cdot 1$	$4 \cdot 95$	$22 \cdot 9$		$\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{3}$	$72 \cdot 3$	$5 \cdot 25$	$22 \cdot 6$	
H	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	H	CN	240		B	58.9	$3 \cdot 0$	$20 \cdot 4$	$17 \cdot 3$	$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{ClN}_{3}$	$59 \cdot 0$	$2 \cdot 9$	$20 \cdot 6$	$17 \cdot 5$
H	$p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	H	CN	245	Yellow	B	$66 \cdot 6$	$4 \cdot 8$	21.0		$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}$	66.3	$4 \cdot 55$	$21 \cdot 1$	
H	Et	Et	CN	72 - 74		A	$64 \cdot 2$	$7 \cdot 2$	$28 \cdot 3$		$\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{3}$	$64 \cdot 4$	$7 \cdot 4$	28.2	
H	$\mathrm{R}^{8} \mathrm{R}^{9}=\mathrm{mo}$		CN	150-151		C	$58 \cdot 6$	$5 \cdot 6$	25.9		$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}$	$58 \cdot 9$	$5 \cdot 6$	$25 \cdot 8$	
$p-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	$\mathrm{R}^{2} \mathrm{R}^{3}=m \mathrm{mo}$		$\mathrm{CO}_{2} \mathrm{Et}$	144-145	Yellow c	D	$57 \cdot 15$	$5 \cdot 8$	7.45		$\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{7}$	57.1	$5 \cdot 9$	$7 \cdot 4$	
$p-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	$\mathrm{R}^{2} \mathrm{R}^{3}=\mathrm{pi}$		$\mathrm{CO}_{2} \mathrm{Et}$	156-157	Yellow ${ }^{\text {c }}$	A	$60 \cdot 6$	6.6	7.5		$\mathrm{C}_{19}{ }^{8} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6}$	$60 \cdot 6$	6.4	$7 \cdot 4$	

temperature, and the reaction was followed in the thermo-statically-controlled chamber of a Beckman DU spectrophotometer. Measurements were usually conducted at a longer wavelength than the $\lambda_{\text {max }}$ of the product enamines, thus avoiding corrections for the absorption of the free amine. Measurements for the dimethoxycarbonylenamines were conducted at $m-\mathrm{Me}, 320 ; m-\mathrm{MeO}, 330 ; \mathrm{H}, 324$; $p-\mathrm{Me}, 344 ; p$ - $\mathrm{Br}, 343$; and $2,6-\mathrm{Me}_{2}, 335 \mathrm{~nm}$; for the diethoxycarbonylenamines at 360 , and for the dicyanoenamine at 320 nm . The spectra of the mixtures after several half-lives corresponded to those of the enamines.

The pseudo-first-order rate coefficients in the presence of
excess of amine were calculated with the aid of the KINDAT programme. ${ }^{39}$ The correlation coefficients were >0.999. $k_{\text {obs }}$ Values were obtained by dividing the first-order coefficients by the amine concentration.

We thank Professors G. Modena and P. Stang for preprints, Professor Y. Shvo for the procedure for compound (II), and Mrs. M. Goldstein for analyses.
[2/332 Received, 14th February, 1972]
${ }^{39}$ R. C. Williams and J. W. Taylor, J. Chem. Educ., 1970, 47, 129.

[^0]: ${ }^{1}$ Part XV, Z. Rappoport and N. Ronen, J.C.S. Perkin II, 1972, 955 .
 ${ }^{2}$ Z. Rappoport, Adv. Phys. Org. Chem., 1969, 7, 1.
 ${ }^{3}$ G. Modena, Accounts Chem. Res., 1971, 4, 73.
 ${ }^{4}$ M. Hanack, Accounts Chem. Res., 1970, 3, 209; C. A. Grob, Chimia, 1971, 25, 87; G. Modena and U. Tonellato, Adv. Phys. Org. Chem., 1971, 9, 185; P. Stang, Progr. Phys. Org. Chem., in the press.
 ${ }_{5}$ Z. Rappoport and A. Gal J. Org. Chem. 1972, 37, 1174.

[^1]: ${ }^{6}$ J. F. Bunnett, E. W. Garbisch, jun., and K. M. Pruitt, J. Amer. Chem. Soc., 1957, 79, 385.
 ${ }_{7}$ P. E. Peterson and J. M. Indelicato, (a) J. Amer. Chem. Soc., 1968, 90, 6515; (b) 1969, 91, 6194.
 ${ }^{8}$ I. Fleming and C. R. Owen, J. Chem. Soc. (B), 1971, 1293.
 ${ }^{9}$ Z. Rappoport and J. Kaspi, Tetrahedron Letters, 1971 , 4039; (b) J.C.S. Perkin II, 1972, 1102.
 ${ }_{10}$ H. M. R. Hoffmann, J. Chem. Soc., 1965, 6794, 6753, 6762.
 ${ }_{11}$ R. C. Bingham and P. v. R. Schleyer, J. Amer. Chem. Soc., 1971, 93, 3189.

[^2]: ${ }^{14}$ For references see Z. Rappoport and S. Gertler, J. Chem. Soc., 1964, 1360.
 ${ }^{15}$ L. H. Piette, J. D. Ray, and R. A. Ogg, J. Mol. Spectroscopy, 1958, 2, 66.

[^3]: 17 L. Maioli, G. Modena, and P. E. Todesco, Boll. sci. Fac. Chim. ind. Bologna, 1960, 18, 66.

 18 A. Campagni, G. Modena, and P. E. Todesco, Gazzetta, 1960, 90, 694; G. Modena, F. Taddei, and P. E. Todesco, Ricerca sci., 1960, 30, 894.
 ${ }_{19}$ S. Hoz, M.Sc. Thesis, The Hebrew University, Jerusalem, 1969.
 ${ }_{20}$ H. Shenhav, Z. Rappoport, and S. Patai, J. Chem. Soc. (B), $1970,469$.

[^4]: ${ }^{24}$ J. Kaspi and Z. Rappoport, unpublished results.
 ${ }^{25}$ Z. Rappoport and A. Gal, J. Amer. Chem. Soc., 1969, 91, 5246, and unpublished results; Z. Rappoport and Y. Apeloig, Tetrahedron Letters, 1970, 1845.
 ${ }^{26}$ S. Winstein, E. Clippinger, A. H. Fainberg, R. Heck, and G. C. Robinson, J. Amer. Chem. Soc., 1956, 78, 328.
 ${ }^{27}$ R. E. Robertson, Canad. J. Chem., 1953, 31, 589; L. Demeny, Rec. Trav. chim., 1931, 50, 60.
 ${ }^{28}$ Z. Rappoport, P. Greenzaid, and A. Horowitz, J. Chem. Soc., 1964, 1334.

[^5]: ${ }_{28}$ W. M. Schubert and G. W. Barfknecht, J. Amer. Chem. Soc., 1970, 92, 207; Z. Rappoport, T. Bässler, and M. Hanack, J. Amer. Chem. Soc., 1970, 92, 4985.
 ${ }_{30}$ J. F. Coetzee, Progr. Phys. Org. Chem., 1967, 4, 45.
 ${ }^{31}$ S. T. McDowell and C. J. M. Stirling, J. Chem. Soc. (B), 1967, 343.
 ${ }_{32}$ (a) B. Bariou and M. Kerfanto, Compt. rend., 1967, 264C, 1134; (b) M. J. Gregory and T. C. Bruice, J. Amer. Chem. Soc., 1967, 89, 4400.
 ${ }^{33}$ S. Patai and Z. Rappoport, J. Chem. Soc., 1962, 392.

